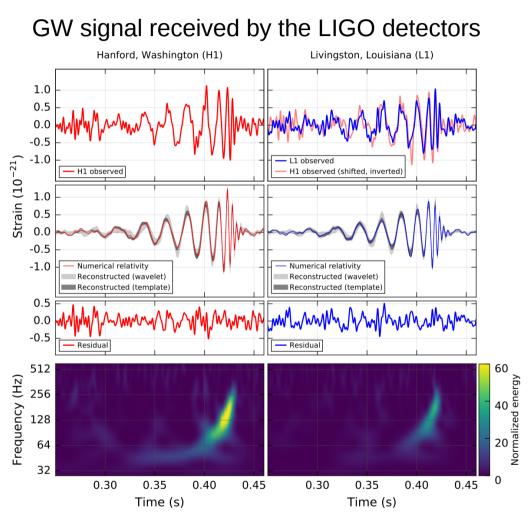
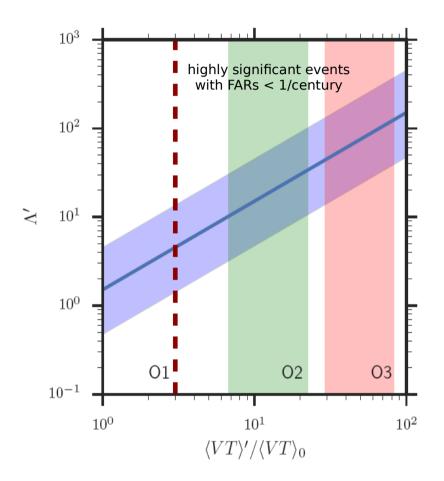
Data-related issues in gravitational wave astronomy



Coalescence of two black holes (credits: SXS)

Outline

- Context direct detection of gravitational waves
- Description of **GW data products**
- Highlights and lessons learned from recent workshop in Strasbourg
 - VO and multimessenger astronomy
 - Vision for the next future open data


Sep 14, 2015 09:50:45 UTC

- First direct detection of gravitational waves
- First observation of massive (> 20 M_{sun}) stellar-mass black hole
- First observation of a black hole binary
- Most luminous event ever detected

Today 19:15 CET: press conference announced Webcast: https://aas.org/aas-briefing-webcast

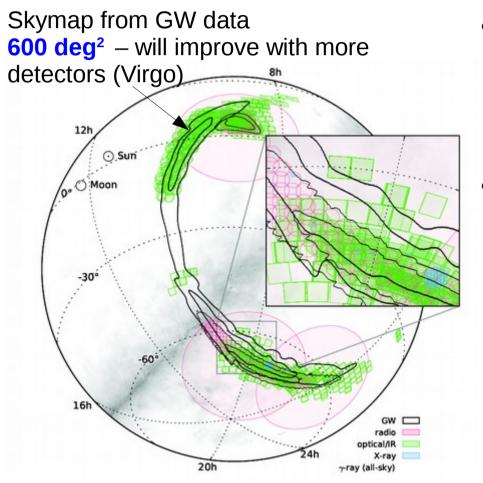
This is a landmark discovery

- This is just the **beginning**...
 - Expect tens or more of binary blackhole mergers in future runs
 - Other types of sources? e.g., neutron stars
 - Breath of science (physics and abundance of compact objects and consequences on star formation, tests of GR, cosmology?)

• New era of gravitational wave astronomy

- Connection to conventional/photonbased astronomy
 EM counterpart to GW is the next "big thing"
- Real-time alerts, open data

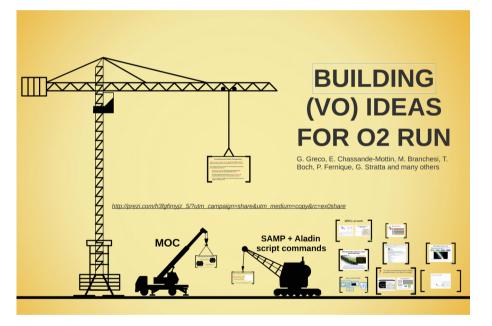
Data products and management


Observation science data

- **Time series** for calibrated h(t) + data quality
- Month/year data stretches (with breaks) at 4 kHz [few 100 GB – This is a small subset of full raw data – many TB]
- Closed model with proprietary period (typ. few years)
- LIGO: data "snippet" released together with publication
- Processed data
 - Alerts/events
 - GW event descriptor (VOevent) and skymap [small volume]
 - Distributed to MOU partners over a private GCN-type network
 - Policy: release public alerts after 4 published events (O3 ?)
 - Other scientific by-products
 - Posterior samples from Bayesian parameter estimations

Workshop in Strasbourg May 31-Jun 1st 2016

- ~20 participants (~10 from GW, 5 countries also robotic wide-field optical telescope)
- Discussion topics / Presentations
 - Intro on VO/tutorial on VO tools
 - Electromagnetic follow-up
 - Alerts and VOevent
 - GW skymap visualization and processing
 - Galaxy catalogs follow-up prioritization
 - Time-domain observations with robotic telescopes
 - Open science data
- Summary available in last WP4 activity report


GW alerts and skymaps (1)

- Alerts from low-latency analysis
 - Goal for next run: ~10 mins
 - Distributed in various formats including VOevent
 - Source position reconstructed in a large error area from GW data
 - Where to point first?

Strategy to prioritize fields in order to maximize chance of detection

GW alerts and skymaps (2)

Credits: Giuseppe Greco (INFN)

- Help to define follow-up strategy
 - Visualize, tile and combine skymaps with other information (e.g., galaxy catalog for "mass targetting")
 - On-going collaboration to demonstrate usage of VO tools (Multi Order Coverage Map)
 - Skymaps will soon include a distance estimate for binary mergers

LIGO Open Science Center (1) www.losc.caltech.edu

LOSC Event Datasets

Event GW150914 (1 hr)

Detectors: **L1 , H1** Time: **2015-09-14T09:50:45.390000** = 1126259462.39

- About this event (doi)
- About this event (direct)
- Bulk data

7 DQ bits and 5 INJ bits Frame type: %s_HOFT_C01

LOSC Run Datasets

(2006-10, ~2.5 yrs total)

Detectors: H1, L1 Start 2009-07-07T21:00:00 (= 931035615) End 2010-10-20T15:00:00 (= 971622015)

- Bulk data
- Data quality / injection information
- Timelines

17 DQ bits and 4 INJ bits Frame type:

Run S5

Run S6

Detectors: L1, H1, H2 Start 2005-11-04T16:00:00 (= 815155213) End 2007-10-01T00:00:00 (= 875232014)

- About this run
- Bulk data
- Data quality / injection information
- Timelines

18 DQ bits and 6 INJ bits Frame type:

- Motivations
 - Maximize science impact
 - Long-term preservation
 - Facilitate access to collaborators (e.g., students) that are not part of the Collaborations

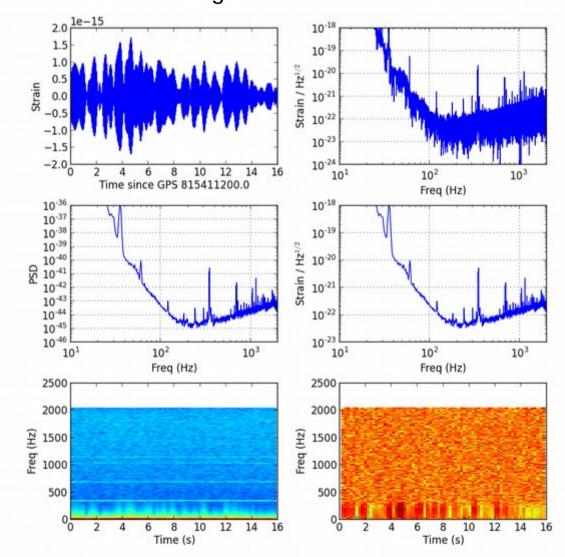
Current status

- *h(t)* @ 4kHz and 1-Hz data quality bitmask in frame format, HDF5, txt.gz
- Test signals (injections), documentation, tutorials

About this run

https://www.losc.l	igo.org/archive/S5/		C Q Search		☆自			
LIGO	LIGO is operated b	• oy Californi	a Institute of Technology and Massachusetts Inst tional Science Foundation.	itute of Technology		MM	ww	W
Getting Started	Archive for	S5 da	taset					
Tutorials Data Events Bulk Data		Frame fo 1515521			to 130 MB. Th	e file may	y be do	wr
Timelines My Sources			oose your gravitational wave detect	or:				
Software			n S5					
GPS ↔ UTC About LIGO		• H2 i						
Data Analysis Projects			oose the start and end time of the d hange either side and the other resp			rsal time	or	
Acknowledgement			Universal Time (ISO8601)		GP	S Time		
		Start Time End Time	2005-11-04T16:00:00 2007-10-01T00:00:00	↔	815155 875232		ОК	
		 Tim Tim Incl 	your output format: e series data in HDF5 and Frame file e series data in HDF5 and Frame file udes statistics of each file: min/max N formatted table of files and data q	es, with data qual , band-limited RN				
		Click the button to continu	e	Contin	ue			

 $\overline{}$


LOSC (3): open code and computing

[...]

[...]

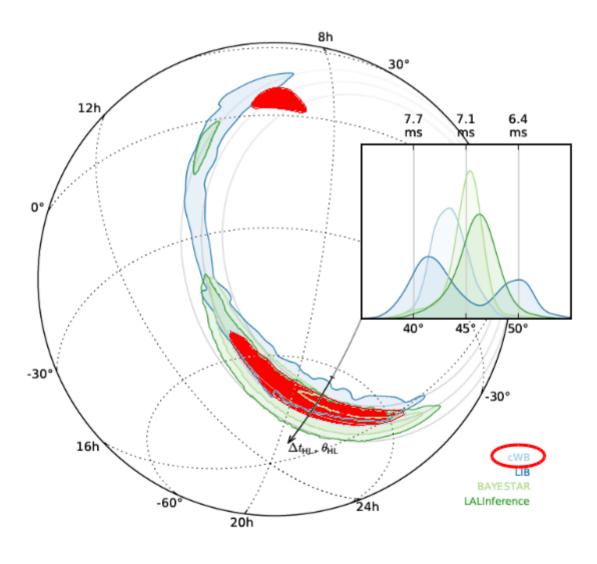
```
# Plot the time series
fig = plt.figure(figsize=(10, 10))
fig.subplots_adjust(wspace=0.3, hspace=0.3)
plt.subplot(321)
plt.plot(time seg - time seg[0], strain seg)
plt.xlabel('Time since GPS ' + str(time_seg[0]))
plt.ylabel('Strain')
# Apply a Blackman Window, and plot the FFT
window = np.blackman(strain_seg.size)
windowed strain = strain seg*window
freq_domain = np.fft.fft(windowed_strain)
freg = np.arange(0, fs, 1.0/length)
plt.subplot(322)
plt.loglog( freq, abs(freq_domain)/4096.0)
plt.axis([10, fs/2.0, 1e-24, 1e-18])
plt.grid('on')
plt.xlabel('Freq (Hz)')
plt.ylabel('Strain / Hz$^{1/2}$')
# Make PSD for first chunk of data
plt.subplot(323)
Pxx, freqs = mlab.psd(strain seq, Fs = fs, NFFT=fs)
plt.loglog(freqs, Pxx)
plt.axis([10, 2000, 1e-46, 1e-36])
plt.grid('on')
plt.ylabel('PSD')
plt.xlabel('Freq (Hz)')
# Plot the ASD
plt.subplot(324)
plt.loglog(freqs, np.sqrt(Pxx))
plt.axis([10, 2000, 1e-23, 1e-18])
plt.grid('on')
plt.xlabel('Freq (Hz)')
plt.ylabel('Strain / Hz$^{1/2}$')
```

iPython notebooks for demos using LIGO data

Credits: https://www.losc.caltech.edu

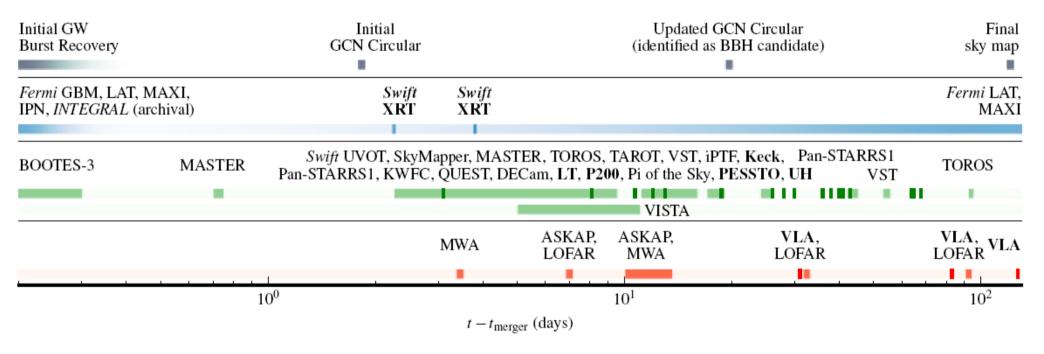
Meeting outcome and lessons learned

- New projects added on-going collaborations
 - Aladin customization for GW skymap handling
 - Glade galaxy catalog pushed to VizieR
 - Multi-dimensional cross-matching tool
- Provided use cases (BlackGEM telescope array) in view of VOevent std evolution
 - Footprints for robotic telescope pointings with time stamps
 Coordination for the coverage of large parts of the sky in a given time interval
- Provided use cases for time series in VO
 - Inclusion of time series observations in VO is still to be defined
 - Internal discussion in Virgo about Open Science Center.
 Will likely follow the LIGO model

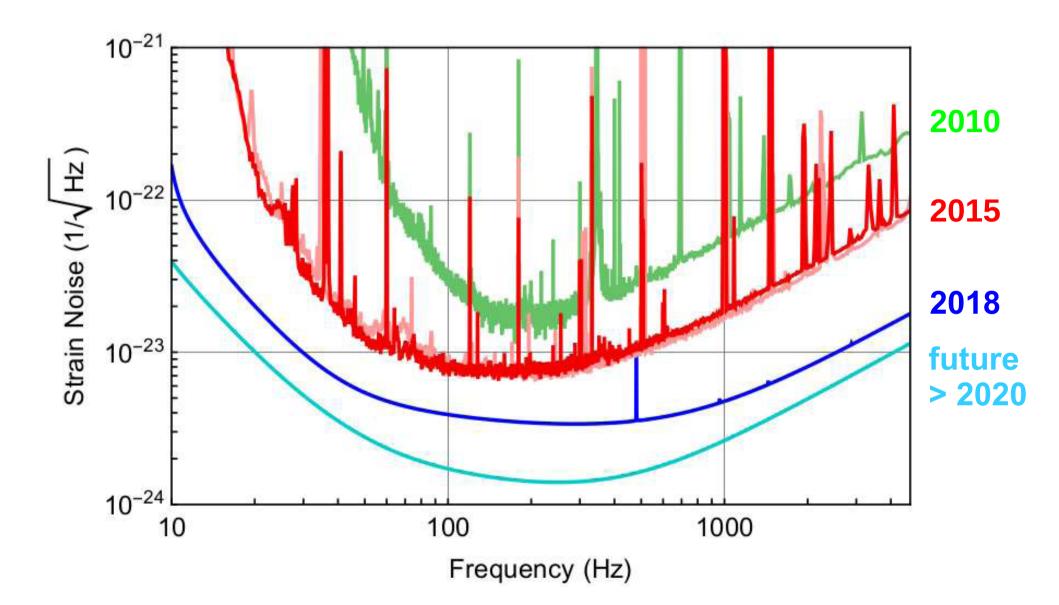

Low latency search

Four low-latency search pipelines

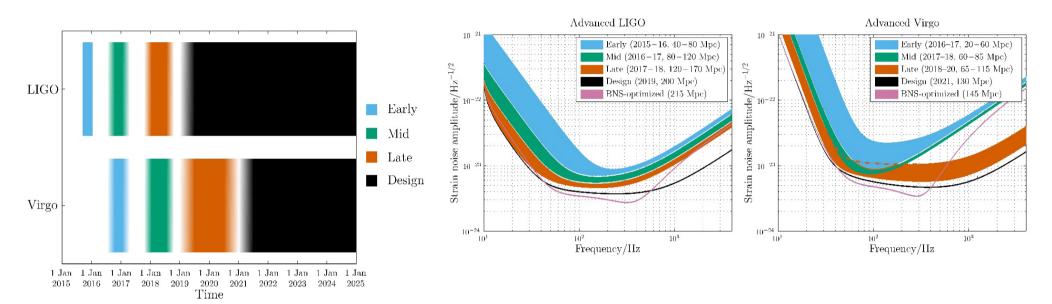
T0+3 min = Event uploaded to DB T0+17 min = First sky map T0+2 days = Alert sent T0+2 months = Final sky map


GW error region is ~600 deg²

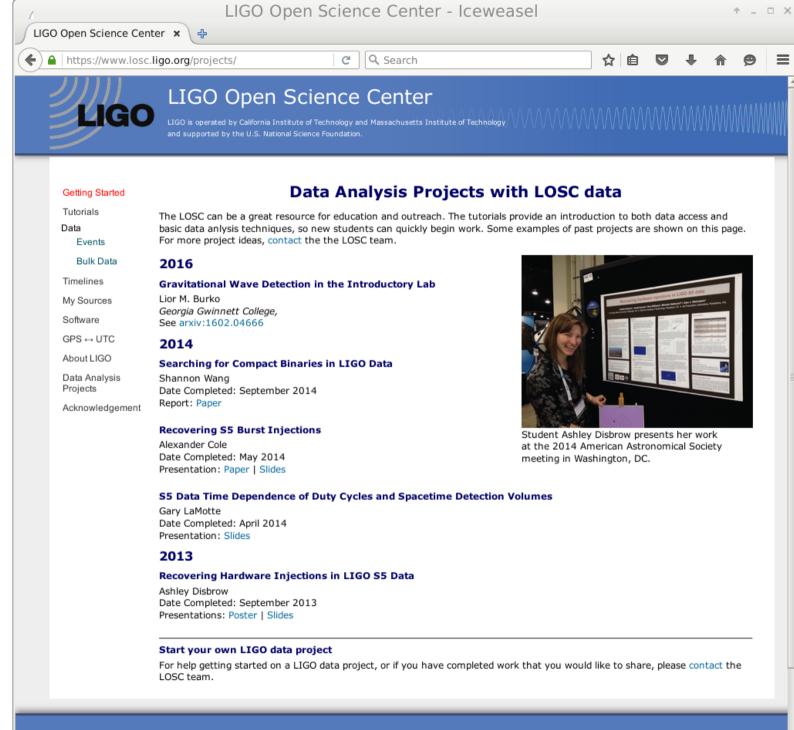
With Virgo on, with full sensitivity, the GW error region reduces to ~10 deg²


Electromagnetic follow-up

25 teams of observers responded to the GW alert Multiwavelength: from radio to gamma-rays



T0+2 days


What's next?

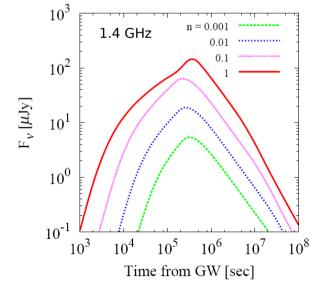
What's next?

Epoch			2015 - 2016	2016 - 2017	2017 - 2018	2019 +	2022+ (India)	
Estimated run duration			4 months	6 months	9 months	(per year)	(per year)	
$\begin{array}{c} \text{Burst range/Mpc} & \begin{array}{c} \text{LIGO} \\ \text{Virgo} \end{array}$		40 - 60	60 - 75	75 - 90	105	105		
		Virgo		20 - 40	40 - 50	40 - 80	80	
BNS range/Mpc		LIGO	40 - 80	80 - 120	120 - 170	200	200	
DNS range	e/mpc	Virgo		20 - 60	60 - 85	65 - 115	130	
Estimated BNS detections		0.0005 - 4	0.006 - 20	0.04 - 100	$0.2\!-\!200$	$0.4\!-\!400$		
	% within	$5 \mathrm{deg}^2$	< 1	2	> 1 - 2	> 3-8	> 20	
90% CR		$20 \ \mathrm{deg}^2$	< 1	14	> 10	> 8 - 30	> 50	
	$ m median/deg^2$		480	230				
searched area	% within	$5 \mathrm{deg}^2$	6	20	<u> </u>			
		$20 \mathrm{deg}^2$	16	44				
	$ m median/ m deg^2$		88	29				

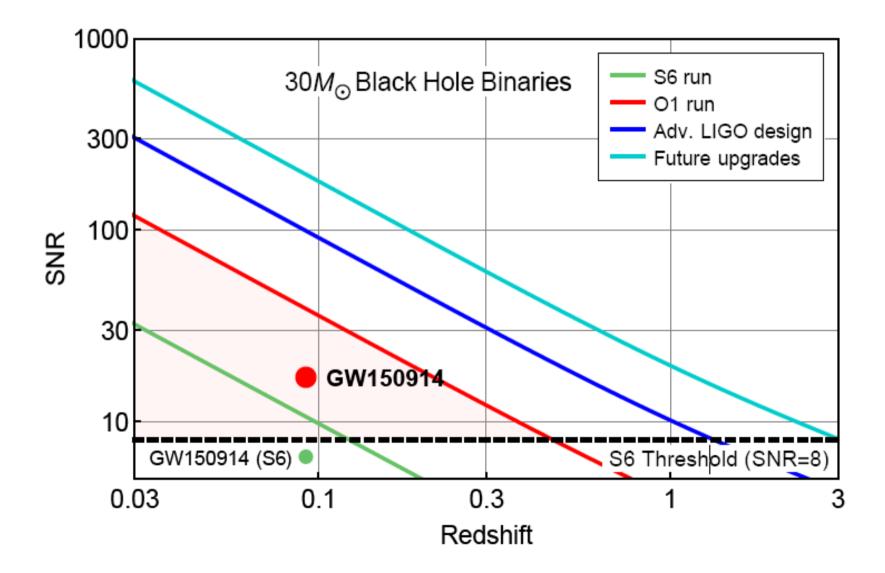
EM signal from BBH mergers?

To explain possibly associated gamma-rays:

BBH with very small separation formed in the collapse of a massive star, resulting in GRB nearly simultaneously with GWs? (Loeb, 2016)


Unusually long-lived disk around BBH produces GRB at the time of coalescence? (Perna et al. 2016)

If matter ("mini-disk") exists around (B)BH


Strong disk wind may be driven by radiation or magnetic fields \rightarrow Fast optical transient around 22 mag in V-band may be produced when thermal photons break out of the outflow

Ultra-fast flow associated with a mini-disk wind develops a blast wave which decelerates and can **generate a radio afterglow**

From Corsi, talk at APS April 2016 Murase et al Astrophys.J. 822 (2016) L9 Yamazaki et al. arXiv:1602.05050

Past and future visibility of GW150914

