Leibniz-Institut fir e Asmmonisc
GAVO

AIP Astrophysik Potsdam

VIRTUAL OBSERVATORY

Data publication at AIP

Data sets, data curation, tools

ASTERICS European Data Provider Forum

June 15, 2016, Heidelberg

% Federal Ministry
2R of Education

and Research

Kristin Riebe, AIP, GAVO

Example data at AIP

 Observations:

- RAVE

 radial velocities survey
- catalogs of stellar properties, spectra

- Plates archive:

« archive of digitized plates from AIP, Hamburg, Bamberg, Tartu (Est)
- images (scans of plates, log books and envelopes), catalogs of identified objects

- Gala data
« so far only simulated data (GUMS10, GOG11, GDRO)

- MUSE
» 3D spectroscopy (data cubes)

 Simulations:

- magnetohydrodynamical simulations

- cosmological simulations
- raw snapshots, halo catalogs,

merger trees, galaxy c
—_—— — —— ,

Example: CosmoSim Database

computer simulations of the evolution of the universe

9 different simulations with different resolution, box size

In total currently about 30 TB public data, ~ 10 TB In
preparation

sometimes it's a long
way to publish the
data ...

The Cosmosim database provides results from cosmological simulations performed within different e e
projects: the MultiDark and Bolshol project, and the CLUES project

MultiDark Bolshoi THGLUES, i e

The Spanish MuliDark Consolider project supports efforts to identify and The CLUES project produces AIP
detect matter, indluding dark matter simulations of the universe. These constrained simulations of the

Mpc/h for Bolsho) to h local universe, partially with gas
simulation boxes (2.5 Gpc/h), and star formation

joSim.org is hosted and

MDR1 MDPL BigMDPL Bolshol Clues3_LGDM
SMDPL MDPL2 BolsholP Clues3_LGGas

Please visit the linked sites for more information about the projects and about the appreciated form of
acknowledgment, if the data Is used In a sclentific publication or proposal.

Check out the Documentation and the Simulations section for more information or the CosmoSim blog for
latest news, additional materials, tutorlals and much more.

Database access

The database can be queried by entering SQL statements directly into the Query Form or via Scripted

Example: Data flow for ComoSim

e EXxtract:

- Cosmologists produce data worldwide, copy them to a central
server at AIP

Transform:

- We check data and reading routines,
data curation: corrections, additions, convert format

Load:
- Ingest data into database

Check and test:

- Check the data for completeness,
consistency

- Create Peano-Hilbert keys (Spatial3D, T. Budavari, G. Lemson)
- Create DB indexes

Publish:

- Using Daiquiri framework

- Write/update documentation; update admin tables of the database
Inform users (blog)

R

Data curation

Check completeness of data sets
- no missing snapshots, corrupted files
- restarted simulations => some snapshots may be duplicated

Create homogeneous data sets, common (standard) formats

- different names for the same physical properties (e.g. spheroidMassGas vs.
Mgas_bulge, Mvirs vs. Mass)

- different coordinate systems (e.g. physical/comoving coordinates)
- different units
- different counts for snapshot numbers

Add identifiers, grid indexes etc. for faster queries & for representing
relations in the database

Cross-link data with other catalogues (DB indexes)

unsufficiently documented data structures require lots of research and
communication with data creators

Wishlist to data creators

 documentation

- provide good and extensive documentation for their data and also for their
data format (not just “my code is my documentation”)

o write/read routines, architecture information

- provide a write and read routine for their data (along with architecture
dependent information like little/big endian, 32/64-bit, any compiler setting
regarding byte alignment)

 HDF5 format for binary data

- provide binary data in HDF5 format (e.g. Galacticus: 2000 pages of
documentation (pdf), HDF5-format => only need to know the data path,
types are given automatically)

I —

Data upload: DBIngestor

https://github.com/aipescience/DBIngestor

adjustable to any database server

easy to write own file readers

- e.g. Asciilngest, Foflngest, Pmssingest, Galacticusingest

apply converters during ingestion

— e.g. unit conversion,
type conversion (int/real),
adding identifiers, grid indexes

apply asserters (not nan, inf, null etc.)
- => transform and upload in one go

- => easier to preserve the workflow for later reference

Database technology

 MariaDB + SpiderEdngine
- use MylISAM engine of MySQL/MariaDB
- Spider engine (Kentoku Shiba) for distributed queries available

- => data distributed over 10 nodes, queries much faster!

User Admin %/

- - -)

MySQL
Webinterface Daiquiri PaQu Query queue DBIngestor / Asciilngest

|

Spider engine

PaQu + QueryQueue

* PaQu (https://github.com/adrpar/paqu):
- reformulates queries, based on Shard-Query

- e.g.: aggregate function count
= count on each node + sum on head node

e QueryQueue (https://github.com/adrpar/mysgl_query_queue):
- allow asynchronous job submission
- plugin for MySQL, supports priorities
— control number of executing jobs on server
- Jobs stored in user tables for later retrieval

R —

Tools: MySQL

mysql_sprng (https://github.com/adrpar/mysqgl_sprng)

- based on SPRNG library (www.sprng.org)
- implements randon number generators

- better random sampling than built-in function

mysql_sphere (https://github.com/aipescience/mysql_sphere)
- port of pgsphere to mysq|
- no indexing yet, contributions welcome!

mysql_dumpvo (https://github.com/adrpar/mysgldump-vo)
- exports VO-tables directly from MySQL/MariaDB

mysql_healpix (https://github.com/aipescience/mysql_healpix)

- function for calculating healpix indexes

queryparser (htps:/github.com/aipescience/queryparser)
- using ANTLR4
- parsing MySQL and ADQL select statements

- translation of ADQL geometry functions to mysql_sphere functions

http://www.sprng.org/

Daiquiri web service

 https://github.com/aipescience/daiquiri
« SQL query interface for querying tabular data

« UWS for non-interactive access:

- UWS = universal worker service, for asynchronous, job-oriented web
services

— user creates job, job waits in queue until executed

- results not returned _
i m med I ate Iy Query interface

soss | [soLige

s ey
- UWS was recent y o e e o A S i 4 e

zzzzzzz

u p d ate d to vers I on 1 . 1 e e i

uws-client (https://github.com/aipescience/uws-client)

* python command line tool for querying VO TAP and UWS
services from the command line

- create job

- update parameters

— submit job

- check execution phase
- download result

- remove job

- abort job

e supports new version UWS 1.1!

R —

uws-validator (nttps:/github.com/kristinriebe/uws-validator)

« for validating UWS-services, including 1.1 features
e can be used for async-endpoints for TAP-services as well
 using behave python module for formulating functional test
cases in “human language” (Gherkin syntax)
- Example test definition:
Scenario: Ensure user can access UWS endpoint
When | make a GET request to base URL
Then the response status should be "200"

- Each “phrase” is a step that needs to be implemented as a function

* put parameters like basic url to UWS-endpoint,
authentication details and test queries into a userconfig-file
(Json)

" s

uws-validator

 Run from command line e.g. like this:
- Check basic access and authentication:
« behave -D configfile="userconfig-gaia.json" features/account.feature
- Test job list, creating veryshort job:
* behave [...] --tags=Dbasics
- For UWS 1.0, exclude all 1.1 tests:
* behave [...] --tags=-uwsl 1
- Do fast tests first (exclude slow and neverending jobs):

 behave [...] --tags=-slow —tags=-neverending

* still some test cases are quite strict, will fail, if jobs stay in
gueue for too long (> a few seconds), server returns
iImmediately for WAIT

I —

Summary

« AIP data sets:
- publishing different data types, but mainly catalogues

Data curation:
- can be a pain, especially if data creators are ignorant or uncommunicative
- necessary to provide consistent data to the user

Ingestion tools:
- DBIngestor + readers

MySQL.:

- using MySQL as backend server

- Spider Engine for distributed database setup for large data amounts
- number of plugins for MySQL

- UWS:
- Daiquiri web framework updated to latest UWS 1.1 version
- uws-client
- uws-validator

check it all out on GitHub:

- https://github.com/aipescience

- https://github.com/adrpar

- https://github.com/kristinriebe

	Title Slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

