
Kristin Riebe, AIP, GAVO

Data publication at AIP
Data sets, data curation, tools

ASTERICS European Data Provider Forum

June 15, 2016, Heidelberg

2

Example data at AIP
● Observations:

– RAVE
● radial velocities survey

– catalogs of stellar properties, spectra

– Plates archive:
● archive of digitized plates from AIP, Hamburg, Bamberg, Tartu (Est)

– images (scans of plates, log books and envelopes), catalogs of identified objects

– Gaia data
● so far only simulated data (GUMS10, GOG11, GDR0)

– MUSE
● 3D spectroscopy (data cubes)

● Simulations:
– magnetohydrodynamical simulations

– cosmological simulations
– raw snapshots, halo catalogs,

merger trees, galaxy catalogs

3

Example: CosmoSim Database

● computer simulations of the evolution of the universe

● 9 different simulations with different resolution, box size

● in total currently about 30 TB public data, ~ 10 TB in
preparation

● sometimes it's a long
way to publish the
data ...

4

Example: Data flow for ComoSim
● Extract:

– Cosmologists produce data worldwide, copy them to a central
server at AIP

● Transform:
– We check data and reading routines,

data curation: corrections, additions, convert format

● Load:
– Ingest data into database

● Check and test:
– Check the data for completeness,

consistency

– Create Peano-Hilbert keys (Spatial3D, T. Budavari, G. Lemson)

– Create DB indexes

● Publish:
– Using Daiquiri framework

– Write/update documentation; update admin tables of the database

– Inform users (blog)

Database
Server

Server

5

Data curation

● Check completeness of data sets
– no missing snapshots, corrupted files

– restarted simulations => some snapshots may be duplicated

● Create homogeneous data sets, common (standard) formats
– different names for the same physical properties (e.g. spheroidMassGas vs.

Mgas_bulge, Mvirs vs. Mass)

– different coordinate systems (e.g. physical/comoving coordinates)

– different units

– different counts for snapshot numbers

● Add identifiers, grid indexes etc. for faster queries & for representing
relations in the database

● Cross-link data with other catalogues (DB indexes)

● unsufficiently documented data structures require lots of research and
communication with data creators

6

Wishlist to data creators

● documentation
– provide good and extensive documentation for their data and also for their

data format (not just “my code is my documentation”)

● write/read routines, architecture information
– provide a write and read routine for their data (along with architecture

dependent information like little/big endian, 32/64-bit, any compiler setting
regarding byte alignment)

● HDF5 format for binary data
– provide binary data in HDF5 format (e.g. Galacticus: 2000 pages of

documentation (pdf), HDF5-format => only need to know the data path,
types are given automatically)

7

Data upload: DBIngestor

Fof
Binary

ASCII
Pmss
Binary

DB
Server

DBIngestor

● https://github.com/aipescience/DBIngestor

● adjustable to any database server

● easy to write own file readers
– e.g. AsciiIngest, FofIngest, PmssIngest, GalacticusIngest

● apply converters during ingestion
– e.g. unit conversion,

type conversion (int/real),
adding identifiers, grid indexes

● apply asserters (not nan, inf, null etc.)
– => transform and upload in one go

– => easier to preserve the workflow for later reference

8

Database technology

Webinterface

● MariaDB + SpiderEdngine
– use MyISAM engine of MySQL/MariaDB

– Spider engine (Kentoku Shiba) for distributed queries available

– => data distributed over 10 nodes, queries much faster!

9

PaQu + QueryQueue

● PaQu (https://github.com/adrpar/paqu):
– reformulates queries, based on Shard-Query

– e.g.: aggregate function count
= count on each node + sum on head node

● QueryQueue (https://github.com/adrpar/mysql_query_queue):
– allow asynchronous job submission

– plugin for MySQL, supports priorities

– control number of executing jobs on server

– jobs stored in user tables for later retrieval

10

Tools: MySQL
● mysql_sprng (https://github.com/adrpar/mysql_sprng)

– based on SPRNG library (www.sprng.org)

– implements randon number generators

– better random sampling than built-in function

● mysql_sphere (https://github.com/aipescience/mysql_sphere)

– port of pgsphere to mysql

– no indexing yet, contributions welcome!

● mysql_dumpvo (https://github.com/adrpar/mysqldump-vo)

– exports VO-tables directly from MySQL/MariaDB

● mysql_healpix (https://github.com/aipescience/mysql_healpix)

– function for calculating healpix indexes

● queryparser (https://github.com/aipescience/queryparser)

– using ANTLR4

– parsing MySQL and ADQL select statements

– translation of ADQL geometry functions to mysql_sphere functions

http://www.sprng.org/

11

Daiquiri web service

● https://github.com/aipescience/daiquiri

● SQL query interface for querying tabular data

● UWS for non-interactive access:
– UWS = universal worker service, for asynchronous, job-oriented web

services

– user creates job, job waits in queue until executed

– results not returned
immediately

– UWS was recently
updated to version 1.1

12

uws-client (https://github.com/aipescience/uws-client)

● python command line tool for querying VO TAP and UWS
services from the command line

– create job

– update parameters

– submit job

– check execution phase

– download result

– remove job

– abort job

● supports new version UWS 1.1!

13

uws-validator (https://github.com/kristinriebe/uws-validator)

● for validating UWS-services, including 1.1 features

● can be used for async-endpoints for TAP-services as well

● using behave python module for formulating functional test
cases in “human language” (Gherkin syntax)

– Example test definition:

Scenario: Ensure user can access UWS endpoint

 When I make a GET request to base URL

 Then the response status should be "200"

– Each “phrase” is a step that needs to be implemented as a function

● put parameters like basic url to UWS-endpoint,
authentication details and test queries into a userconfig-file
(json)

●

14

uws-validator

● Run from command line e.g. like this:
– Check basic access and authentication:

● behave -D configfile="userconfig-gaia.json" features/account.feature

– Test job list, creating veryshort job:
● behave [...] --tags=basics

– For UWS 1.0, exclude all 1.1 tests:
● behave [...] --tags=-uws1_1

– Do fast tests first (exclude slow and neverending jobs):
● behave [...] --tags=-slow –tags=-neverending

● still some test cases are quite strict, will fail, if jobs stay in
queue for too long (> a few seconds), server returns
immediately for WAIT

15

Summary
● AIP data sets:

– publishing different data types, but mainly catalogues

● Data curation:
– can be a pain, especially if data creators are ignorant or uncommunicative

– necessary to provide consistent data to the user

● Ingestion tools:
– DBIngestor + readers

● MySQL:
– using MySQL as backend server

– Spider Engine for distributed database setup for large data amounts

– number of plugins for MySQL

● UWS:
– Daiquiri web framework updated to latest UWS 1.1 version

– uws-client

– uws-validator

● check it all out on GitHub:
– https://github.com/aipescience

– https://github.com/adrpar

– https://github.com/kristinriebe

	Title Slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

