Data diffusion for ground based gamma-ray astronomy The Cherenkov Telescope Array

Mathieu Servillat

Laboratoire Univers et Théories Observatoire de Paris PSL Research University

ASTERICS European Data Provider Forum

Mathieu Servillat

Cherenkov data diffusion

High Energy Astrophysics

- Violent, transient, non-thermal phenomena
- Matter under extreme conditions
- Particle Acceleration
- Fundamental Physics
- Role of Black Holes in the structuration of the Universe

Mathieu Servillat

Cherenkov data diffusion

Cherenkov Astronomy and CTA

Very high energy (VHE) data

39d20

Currently Operating VHE Instruments

MAGIC: located in La Palma, Spain Since 2004: single 17m telescope Since 2009: system of two 17m telescopes

VERITAS: located in Mt Hopkins, Arizona Since 2007: four 12m telescopes Since 2012: upgraded PMTs

H.E.S.S.: located in Khomas Higlands, Namibia Since 2002: four 12m telescopes Since 2012: added 32m by 24m telescope Since 2015: camera upgrades on 12m telescopes

Mathieu Servillat

Cherenkov data diffusion

15 June 2016

4

@ Jeff Grube

Cherenkov Astronomy and CTA

- Two arrays of 100 (South) et 20 (North) telescopes
- July 2015: sites selection, Chile (ESO) and La Palma
- 2016: pre-production phase
- 2018-2023: production phase
- Observatory open to the community

Mathieu Servillat

Cherenkov data diffusion

CTA Consortium

Telescope types

Low-energy section 4 x 23m (LST) FoV: 4-5 degrees E > 10s of GeV

Core-energy section 23 x 12m (MST) FoV: 7-8 degrees 100 GeV < E < 10 TeV

High-energy section 30-70 x 4-6m (SST) FoV: 10 degrees Multi-TeV energies

Mathieu Servillat

Cherenkov data diffusion

Cherenkov Astronomy Principles

- Dark nights (small duty cycle)
- Event Reconstruction: photon, particle shower, Cherenkov light (faint, few nanoseconds)
- Atmosphere = calorimetre
 Simulations, assumptions
- Complex Metadata, need to be structured

Mathieu Servillat

Cherenkov data diffusion

15 June 2016

© DESY/Milde Science Comm./Exozet

Why more telescopes in an array?

- Larger collection area for gamma-rays
 - More events, more photons
 - Better spectra, images, fainter sources

Better events

- More precise measurements of atmospheric cascades and hence primary gammas
- Improved angular resolution
- Improved energy resolution
- Improved background rejection power

Data levels and workflow

Data Level	Short Name	Description	Data reduction factor	DL0
Level 0 (DL0)	DAQ-RAW	Data from the Data Acquisition hardware/software.		Calibration
Level 1 (DL1)	CALIBRATED	Physical quantities measured in each separate camera: pho- tons, arrival times, etc., and per-	1-0.2	(per telescope)
		telescope parameters derived from those quantities.		DL1
Level 2 (DL2)	RECONSTRUCTED	Reconstructed shower parame- ters (per event, no longer per- telescope) such as energy, di- rection, particle ID, and re- lated signal discrimination pa-	10^{-1}	Reconstruction (shower)
	BEDLICED	rameters.	10^{-2}	DL2
	Published (FITS)	ray-candidate) events, along with associated instrumental response characterizations and any technical data needed for	10	Analysis (science preparation)
Level 4 (DL4)	SCIENCE	High Level binned data products	10^{-3}	DL3
Level 5 (DL5)	OBSERVATORY	curves. Legacy observatory data, such as CTA survey sky maps or the CTA source catalog.	10^{-5} - 10^{-3}	Data product generation
				DL4 🕈

Mathieu Servillat

Acquisition/ Simulations

Reconstruction

Hillas Parameters (1984)

- Shower images are elliptical
- A few parameters:
 - Length (L) & Width (W)
 - Nominal Distance (d)
 - Azimuthal angle (φ)
 - Orientation angle (a)
 - Amplitude (size)
- Additional parameters: asymmetry, …

Advanced methods

- 3D model
- Fit to simulated images

Analysis: producing images, spectra, light-curves

- Event lists (not necessarily gamma-rays!)
- Instrument Response Function
- ◆ TECH tables: atmosphere and data-quality measurements, → good time intervals, ...

Background dominated

- Even after stereo-reconstruction, hadron rejection is not 100% efficient
- Therefore we can only talk statistically about gamma rays!
- Use likelihood methods: model background, source assumption, Poisson statistics...

Source confusion

- Large PSF
- Many sources are not point-like

t	RA	Dec	az	alt	E
501	128.2	-37.1	321.1	45	0.112
600	130.23	-36.2	322.1	45.1	0.242
620	120.124	-33.33	312	45.7	0.434
640	121.1	-34.1	323.4	43.0	35.0
720	123.23	-28.1	322.1	43.5	0.401
900	100.0	-31.2	32.2.	45.3	1.23

Cherenkov data diffusion

Mathieu Servillat

Cherenkov data diffusion

Data diffusion for CTA

- European Commission's Horizon 2020 framework
- ASTERICS aims to address the cross-cutting synergies and common challenges shared by the various Astronomy ESFRI facilities (E-ELT, CTA, SKA & KM3NeT)
- Work Package 4: Data Access and Data Interoperability (DADI)

Where CTA meets VO

CTA Data Model

- Compatibility with DatasetDM, ObsCoreDM...
- Development of ProvenanceDM

Data Diffusion

Compatibility with VO protocols (e.g. TAP)

Data Processing

- Use of a work cluster with UWS pattern
- Store/retrieve Provenance metadata

Data Access

Authentication & Authorization solutions

VHE Data Access

Initial developments

- High level VO data access prototypes
- H.E.S.S at Observatoire de Paris: http://hess.obspm.fr/
- MAGIC at IFAE Barcelona: http://vobs.magic.pic.es/
- VO standards vs VHE data?
 - Complex hierarchy of related products
 - Complex metadata to be structured
 - ◆ Queryable metadata ? ↓ 1 ■ □ □ 1

CTA data access prototype - D 2 Log PHp

- CTA data model implementation
- Test VO compliance http://voparis-cta-test.obspm.fr

2 X

RXTE

💌 4 🕨 🗹 Log 🛄 Flip

Chandra

161.9

A.A.I B.AII

C.Al

Ŧ

🗹 All

H.E.S.S

VO data diffusion prototype

Web client

http://voparis-cta-test.obspm.fr

Monte Carlo simulations

22.514

0.001

Submit

Reset

Source Dec (deg)

Search radius (deg)

Data Distiller Data Reduction

INAF CTA portal

Mathieu.Servillat@obspm.fr () logout

CTA Data Distiller Cone Search Used to query Simbad with Sesame and set RA/Dec. **Target Name** Crab Nebula Source RA (deg) 83.633 Django, jQuery, BootStrap3

> Name resolver Simbad through Sesame

Builds and Sends the ADQL query

♥ ObsCore Search			
proposal_id	Proposal ID		
Mathieu Servillat	Cherenkov data diffusion	15 June 2016	19

Web client

http://voparis-cta-test.obspm.fr

Data mining use cases for CTA

Use case	Description
Cone Search	Search data available for a given Target
ObsCore search	 Search data available corresponding to ObsCore keywords (target_name, time interval,), e.g.: search data for a given target at a given time search data in a given region of the sky search data that contain events at energy higher than 50 TeV
ObsCore optional search	 Search data available corresponding to ObsCore optional keywords (target_class, data_rights,), e.g.: search public data for all blazars search data for a given proposal_id
ObsConfig search	 Search data available corresponding to ObsConfig keywords (sub_array_name, pointing_mode, obs_mode), e.g.: search data that include the Large Size Telescopes (LSTs) search data for a given target, that do not include the divergent pointing mode
Provenance search	 Search data available corresponding to Provenance keywords (calib_version, creation_date), e.g.: search data produced by a given version of the pipeline and for a given target search data produced using a given reconstruction method search data for a given target produced with loose cuts

ObsCore fields for CTA

- dataproduct_type: has to be one of the following: image, cube, spectrum, sed, timeseries, visibility, event. Set to "event" in the prototype, has it exposes the 1DC DL3 files.
- calib_level: one of the following integer values: 0 (instrumental or raw data in a non-standard/proprietary format), 1 (instrumental data in a standard format, e.g. FITS), 2 (calibrated data in standard format, with instrument signature removed), and 3 (more highly processed data product). CTA defines 5 data level, for example DL3 data are calibrated data in scientific units but still include an instrument signature, hence its calib_level would be between 1 and 2.
- access_url: to be defined by the Archive, however the CTA 1DC data should not be accessible to the public. We thus include simulated data hosted on http://voplus.obspm.fr/cta/ and always point to this URL in the prototype. In the VO context, the access URL is generally a public link. To handle data rights, this may point to a retrieval system with the ID of the requested data product.
- em_min, em_max: The spectral coordinates are in TeV for us and should be converted to meters to follow the ObsCore standard. This could lead to precision issues in spectral data (though it is not an issue for discovery purposes).

facility_name: we use the observatory name, e.g. "CTA".

instrument_name: As our test data comes from several experiments, we describe them here: HESS, MAGIC, VERITAS or CTOOLS (for simulated data with the ctools). This could be use to expose the CTA SubArray used to acquire the data?

Extended ObsCore fields for CTA

Optional ObsCore fields:

- dataproduct_subtype: show DL0-5?
- obs_release_date
- data_rights (Public/Secure/Proprietary)
- s_resolution_min, s_resolution_max (as it is dependent on energy)
- proposal_id

ObsConfig:

- site: North or South site.
- sub_array_name (or directly in instrument_name)
- pointing_mode: parallel, divergent, convergent, custom...
- obs_mode: wobble, scan, on, off
- run_type: flatfield, science, SPE...

Provenance:

- data_quality: flag giving information on the data quality
- calib_version: version of the calibration stage of the Pipeline
- reco_version: version of the reconstruction stage of the Pipeline
- reco_method: reconstruction method used to obtain DL2 data
- **applied_cuts**: selection criteria used to obtain e.g. a DL3 photon event list
- spectral_model: spectral model assumed to obtain spectrum

Mathieu Servillat

Cherenkov data diffusion

Online processing (client)

CTA Data Distiller Q Search Form Sob List

X Sign out Mathieu Servillat

Job list loaded

Job List

Theme									
Туре	Start Time	Destruction Time	Phase	Details			Control		
ctbin	2016-04-12 15:08:00	2016-05-12 15:07:30	COMPLETED	Properties	C Parameters	1 Results	► Start	() Abort	Delete
ctbin	2016-01-28 16:06:29	2016-02-27 16:06:29	COMPLETED	Properties	C Parameters	1 Results	► Start	() Abort	Delete
ctbin	2016-01-28 14:57:32	2016-02-27 14:57:32	ERROR	Properties	C Parameters	1 Results	► Start	() Abort	Delete
ctbin	2015-11-05 15:11:09	2015-12-05 15:11:09	COMPLETED	Properties	C Parameters	1 Results	► Start	() Abort	Delete
ctbin	2015-11-05 15:11:06	2015-12-05 15:11:06	PENDING	Properties	C Parameters	1 Results	► Start	() Abort	Delete
othin	2015-11-05 14-20-18	2015-12-05 14-20-18	ABORTED		12 Parametere	A Reculte	Start	() Abort	n Delete

Asynchronous management of processes

- Job sent on a work cluster
- JavaScript library developped at PADC

Mathieu Servillat

Cherenkov data diffusion

Online processing (server)

Main features

- IVOA standard
 - Universal Worker System (UWS)
- REST architecture
 - Python micro-framework: bottle.py
- Collaborative development
 - Git server at PADC (gitolite)
 - GitHub: https://github.com/ParisAstronomicalDataCentre/OPUS

Tests and quality

- Unit tests with unittest and webtest
- Activity history with logging

Prototype available

https://voparis-uws-test.obspm.fr

From UWS to Provenance

provjson: https://voparis-uws-test.obspm.fr/get_result_file/bc3ac123-82a0-4036-9d06-9880cc196f4f/provjson/provenance.json

Mathieu Servillat

Cherenkov data diffusion

Authentication & Authorization

- Shibboleth+Grouper
 - EduGAIN federation
 - SAML2
- Unity IDM
 - Uses OpenID Connect
- OpenID Connect
 - Google as an IdP
- OAuth2
 - Github, Google,
 Facebook, ...
- OAuth
 - Twitter, ...
- OpenID 2.0 (deprecated)
- Local account

Summary

CTA: the Cherenkov Telescope Array

- An open observatory for the TeV domain
- For the first time!
- Compatibility with existing VO standard?
- Evolution of current standards and new ones!
- Related IVOA working groups:
 - DM: Provenance data model
 - GWS: UWS pattern, A&A solutions
 - Semantics, DAL, Applications...

ASTERICS H2020 project

Meetings, schools, working groups on those topics