



# **Euclid Data Processing**

#### *Martin Kümmel,* on behalf of the **Euclid Consortium**



LUDWIG-MAXIMILIANS-UNIVERSTITÄT MÜNCHEN Faculty of Physics Chair for Cosmology and Structure Formation





![](_page_0_Picture_10.jpeg)

### Euclid Consortium (May '18)

- 16 countries;
- 225 institutes/labs
- 1545 full members
- Long term project (already 200 alumni)
- Yearly Euclid Mission Conference with ~400 participants;

![](_page_1_Picture_6.jpeg)

![](_page_1_Picture_7.jpeg)

![](_page_1_Picture_8.jpeg)

#### Science Goals of Euclid

- Determine the expansion of the Universe at various cosmic ages;
- Understand the nature of the expanding Universe;
- Explore the nature and properties of dark energy, dark matter and gravity

#### Two experiments:

- Weak lensing analysis (Baryonic Acoustic Oscillations);
- Galaxy clustering (Redshift Space Distortion);
- Redshifts are required:
  - From NISP slitless spectroscopy;
  - From photo-z;
- (Legacy science);

![](_page_2_Picture_11.jpeg)

![](_page_2_Picture_13.jpeg)

### Euclid Satellite

| Telescope              | 1.2m Korsch, 3 mirror anastigmat., f=24.5m |                                                     |                  |                  |                                                                          |
|------------------------|--------------------------------------------|-----------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------|
| Instrument             | VIS                                        | NISP                                                |                  |                  |                                                                          |
| Field-of-<br>View      | 0.787x0.70<br>9 deg <sup>2</sup>           | 0.763x0.722 deg <sup>2</sup>                        |                  |                  |                                                                          |
| Capability             | Visual<br>Imaging                          | NIR Imaging Photometry                              |                  |                  | NIR<br>Spectroscopy                                                      |
| Wavelength range       | 550-900 nm                                 | Y (920-1146 nm)                                     | J (1146-1372 nm) | H (1372-2000 nm) | 1100-2000 nm<br>3x10 <sup>-16</sup> erg cm <sup>-2</sup> s <sup>-1</sup> |
| Detector<br>Technology | 36 arrays<br>4k x 4k<br>CCD                | 16 arrays<br>2k x 2k NIR sensitive HgCdTe detectors |                  |                  |                                                                          |
| Pixel<br>Size/FWHM     | 0.1" / 0.2"                                | 0.3 " / 0.3"                                        |                  |                  | 0.3 "/                                                                   |
| Spectr. Res.           | -                                          | -                                                   |                  |                  | R=250                                                                    |

#### Launch: December 2021

![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_5.jpeg)

## **Euclid Filters**

- VIS: weak lensing
- **NIR:** photo-z
- Ground based (photo-z): griz

![](_page_4_Figure_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_4_Picture_7.jpeg)

## Euclid Survey(s)

- Wide Survey:
  - 15,000 deg^2
  - VIS: 24.5 mag (10σ)
  - Y/J/H: 24.0 mag (5σ)
  - g/r/i/z = 25.2/24.8/24.0/24.0mag (10 $\sigma$ )
- Deep Survey:
  - 2x20deg<sup>2</sup> (EDF-North and EDF-South)
  - VIS: 26.5 mag (10σ)
  - Y/J/H: 26.0 mag (5σ)
  - g/r/i/z = 27.2/26.8/26.0/26.0 mag (10 $\sigma$ )
- NIR self-calibration field;
- Photo-z calibration field;

![](_page_5_Picture_13.jpeg)

![](_page_5_Picture_15.jpeg)

### Euclid Surveys

![](_page_6_Figure_1.jpeg)

#### Map produced by J. C. Cuillandre, showing exclusion regions due to extinction

![](_page_6_Picture_4.jpeg)

#### External Surveys: photometric

- Dark Energy Survey (**DES**): *griz*, south;
- Kilo Degree Survey (**KiDS**): *ugriz*, south;
- CFHT survey **CFIS**: *ur*, north
- **JPAS** survey: *g*, north;
- PAN-STARRS 1 / 2: *iz*, north, (MoU to be signed);
- LSST: ugrizy, south and north (partially), negotiations are going on;

#### For photometric redshifts!

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

### External Surveys: photometric

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_3.jpeg)

#### External Surveys: spectroscopic

- For photometric redshift calibration;
- Goal: unbiased spectroscopy;
- Dedicated programs in the North (Keck) and South (VLT);
- Grantecan (GTC) spectroscopy started;
- Call to the community to collect spectra (https://www.isdc.unige.ch/euclid/call-forspectroscopic-data.html or A. Galametz audrey.galametz@unige.ch)

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

#### Science Ground Segment (SGS)

- Science Working Groups (SWG's):
  - Cover Weak Lensing/Cluster/Galaxy Clustering/Strong Lensing/Cosmology
  - Set the requirements for the data reduction;
  - Do the scientific analysis;
  - Write papers;
- Organizational Units (OU's):
  - Find data reduction methods;
  - Develop (at least) prototype code;
  - Design and implement the Pipeline Function;
- Science Data Centers (SDC's):
  - Euclidize software;
  - Optimize software to production level;
  - Run the Pipeline Functions;
- Euclid Archive System (EAS):
  - Hosts the data and metadata;
  - Controls the processing;
  - Data delivery;

![](_page_10_Picture_18.jpeg)

## Organizational Units (OU's)

- OU-SIM: simulations for all instruments;
- "Instrument oriented" OU's:
  - OU-VIS: for VIS data;
  - OU-NIR: for NIR photometry;
  - OU-SIR: for NIR spectroscopy;
  - OU-EXT: for ground based photometry (subdivided);
- OU-MER: object detection, photometry, morphology;
- "Science oriented" OU's:
  - OU-PHZ: photometric redshifts;
  - OU-SPE: spectroscopic redshifts;
  - OU-SHE: weak lensing;
- OU-LE3: cores science analysis;

![](_page_11_Picture_13.jpeg)

![](_page_11_Picture_14.jpeg)

![](_page_11_Picture_15.jpeg)

#### Science Data Centers

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_4.jpeg)

#### Science Data Centers (cont.)

- Each major contributor has one SDC;
- Different organizations (dedicated hardware, general computing center, ...)
- Classical server hardware;
- No GPU's (due to heterogeneity);
- Every SDC must be able to run every Euclid code (... except EXT legacy code);
- SDC-DE:
  - Part of the Max-Planck-Gesellschaft computing center;
  - Dedicated hardware;
  - 1<sup>st</sup> generation cluster with 648 cores already retired;
  - 2<sup>nd</sup> generation cluster with ~300 cores, 600 TB storage running;
  - During survey processing: 6000 cores;

![](_page_13_Picture_12.jpeg)

![](_page_13_Picture_13.jpeg)

![](_page_13_Picture_14.jpeg)

#### Processing / Software development

#### • Processing:

- In Virtual Machines (VM), CENTOS7 based;
- Defined set of libraries available;
- Latest VM with CVFMS ( $\rightarrow$  automatic upgrading);
- Continuous software deployment;
- Software development:
  - C++11 and python3;
  - Few (non-C++/python3) legacy code;
  - CMake based build system;
  - Git/github;
  - Not many fundamental libraries;

![](_page_14_Picture_12.jpeg)

![](_page_14_Picture_14.jpeg)

### Available libs/applications

- boost
- Breather
- cMake
- cppCheck
- Cppunit
- Doxygen
- Ds9
- pyFFTW
- Scikit-learn
- Elements
- EuclidEnv
- Euclid DM **Bindings**
- Eclipse
- FV
- gcovr
- Git
- GSL

- wcslib
- Xerces
- libpng
- libcairo2
- •
- GoogleTest
- Sphinx
- Fitsio
- Healpy
- Astropy
- matplotlib
- NumPy
- PyEphem
- PyQt

Healpix-C++

- swig

- libreadline6

- Ixml

- SciPy

- Python
- Log4cpp
- pylint
- PyTest
- pythoncoverage
- PyXB
- RATS
- Six
- SonarQube
- Subversion
- valgrind
- vera++
- Kcachegrind
- CCfits •
- CFitsIO
- Eigen
- FFTW

![](_page_15_Picture_69.jpeg)

![](_page_15_Picture_71.jpeg)

### Science Challenges

- What to do without real data  $\rightarrow$  use simulations!
- Simulations:
  - True Universe catalogs;
  - Star catalog (including double stars);
  - Very very detailed instrument models;
- Science Challenges:
  - Increase in area;
  - Increase in processing depth;
  - Increase in level of detail;
- Goal: end-to-end processing over entire survey area!
- Central for pipeline validation and performance validation

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_14.jpeg)

#### Science Challenges (cont.)

| Scientific Challenge<br>#1: Simulators<br>challenge                          | Produce samples of Euclid FoV (0,7°) of VIS/NIR/SIR simulated images and spectroscopy images consistent with a single input catalogue (galaxies, stars), instrument model, cosmic rays injected into the simulation code. |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific Challenge #2:<br>SIM/ VIS/NIR/SIR                                 | Produce VIS/NIR/SIR output data products which are consistent with the Data Model: calibrated exposures, stacks, masks, catalogues, 1D spectra, 2D spectra (detection of transients not needed, level Q not needed).      |
| Scientific Challenge #3:<br>VIS/ NIR/EXT/MER                                 | Production of a merged catalogue of sources (each source has a single ID).<br>Now planning to use data products in Science Archive demo (SAS)                                                                             |
| Scientific Challenge #4:<br>VIS/ NIR/SIR/EXT/MER/SHE                         | Production of galaxy shape measurement and VIS PSF model refinement<br>KOM in Jan 2018                                                                                                                                    |
| Scientific Challenge #5:<br>VIS/ NIR/SIR/EXT/MER/PHZ                         | Production of photometric redshifts measurement and<br>PDF.<br>KOM in Jan 2018                                                                                                                                            |
| Scientific Challenge #6:<br>VIS/ NIR/SIR/EXT/MER/SPE                         | Production of spectroscopic redshifts measurement.<br>KOM in Jan 2018                                                                                                                                                     |
| Scientific Challenge #7:<br>VIS/ NIR/SIR/EXT/MER/<br>SPE/PHZ/SHE             | Update pipeline releases to meet more consistent requirements coverage w.r.t. the previous challenges                                                                                                                     |
| scientific challenge #8: VIS/<br>NIR/SIR/EXT/MER/SPE /<br>PHZ/ SHE/LE3 (LE3) | Quality of LE3 data products shall be challenged according to the<br>corresponding scientific requirements                                                                                                                |

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_4.jpeg)

#### Science Challenge 4/5/6: Overview

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_3.jpeg)

## OU-MER pipeline

![](_page_19_Figure_1.jpeg)

# Flow diagram of the MER pipeline

### Euclid and the VO

- Will be heavily used on the user side of the archive;
- Tools that are/will be used:
  - TAP+ service interface;
  - UWS job management;
  - ESASky;
  - CDS Aladin Lite;
  - VOSpace Browser;
  - SAMP;
  - HIPS?

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

![](_page_20_Picture_12.jpeg)

![](_page_21_Picture_0.jpeg)