
Adding catalog data to object lists using

the VO

Markus Demleitner

October 26, 2022

Abstract

This brief tutorial shows you how to quickly add proper motions
and photometry from Gaia to (almost) any object list using the
Virtual Observatory. The VO protocol most suited to this kind
of this is TAP (“table access protocol”) and lets you transfer data
and queries to database servers. In the example, we will be using
TOPCAT as a client. There is no lock-in to it: There are libraries
and other tools allowing an integration of TAP operations into
arbitrary workflows – that’s what standards are about. Tutorial
supplements apply the techniques to Simbad, show how to use
TAP from Python, and introduce UCDs.

Software: Topcat, pyVO

1

http://www.star.bris.ac.uk/~mbt/topcat/

Adding catalog data to object lists using the VO

1 Describe your data to TOPCAT

Whatever you can load into TOPCAT can work here. To play through
the worst case, let’s assume you just have a load (millions are possible) of
RA/Dec values in one of the text files we astronomers (regrettably) so adore.
If you don’t have a file of your own handy, we have prepared a sample file
for you at

http://docs.g-vo.org/pmadd-testdata.txt.

. 1 Load your data – Click File/Load Table With our test data, you’ll manually
have set format to ASCII in TOPCAT’s load dialog. With the pesky ASCII
files, TOPCAT has no way to know it’s dealing with positions. Because we
later need it to understand that, we have to help it.

. 2 Improving column metadata – To tell TOPCAT there’s RA and Dec here,
bring up the columns info window by selecting Views/Column Info from the
menu. The easiest way to tell TOPCAT we have a position here is just
editing the column names to be ra and dec (at the end of this document
you’ll find a better way). Double-click into table cells to edit them. Close
the columns info window.

2 Select the service and table to match against

To locate services and data in the VO, use the Registry; there are many
ways to do that, and it’s possible (and in some cases a very good idea) to
use physics to locate data (“Give me an all-sky catalog containing proper
motions and infrared photometry”). There is a separate tutorial for that.
Here, we already know the name of the data collection, which simplifies data
discovery.

. 3 Find a TAP service – In TOPCAT, select VO/TAP Query, and in Keywords
type “Gaia”. This will result in a list of services offering at least some Gaia
data. Most of the ones near the top should be good for what follows; select
it, then hit Use Service.

. 4 Find your table – Some TAP services have hundreds of even thousands of
tables. To find the metadata of yours, in the Find field in the Metadata pane,
enter some characters you expect to see in the table name or description. In
this case, “dr2” or “source” would work fine. Note the extensive metadata

2

http://docs.g-vo.org/pmadd-testdata.txt

Adding catalog data to object lists using the VO

right of the table tree. It should help you select a pertinent table. In this
case, you probably want gaiadr2.gaia_source (or gaia.dr2light if you
chose the GAVO DC TAP service). Select this table in the table tree so
TOPCAT knows this is what you are interested in.

3 Write the query

Since positional crossmatches to uploaded data are so frequent, TOPCAT
can generate you a sample query to start from:

. 5 Have TOPCAT help you with your query – Hit the Examples button (right
below the large text field near the bottom of the TAP dialog) and select
upload/Upload join. A query adapted to joining the current TOPCAT table
with the TAP table selected appears in the query field. It should look pretty
much like this:

SELECT

TOP 1000

*

FROM gaia.dr2light AS db

JOIN TAP_UPLOAD.t1 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 5./3600.))

Don’t worry if you don’t understand all of it now – that can wait a bit.
Suffice it to say that it’s fairly standard SQL1

. 6 Customise the match limit – Edit it a bit to better fit your needs: Instead of
TOP 1000, say TOP 5000 or something appropriate to the size of your input
data (but remember that an input line can match multiple objects, so be
generous here). You will have to raise Max Rows above the query input if
you want to retrieve more rows than shown there.

The * after the TOP clause means: Get all columns. That’s more than
we care to see here. We want our columns – that’s tc.*, the tc being the
alias given in the line starting with JOIN –, and the proper motions and

1“Structured Query Language”, the de-facto standard for communicating with
database systems since the seventies. In this incarnation, it’s actually ADQL, where
AD stands for “Astronomical Data”, but that makes no real difference.

3

Adding catalog data to object lists using the VO

photometry from the database. Obtain the names from the Columns pane
in the TAP Window’s table browser.

. 7 Customise the fields to retrieve – So, replace the * with:

tc.*, pmra, pmdec,

phot_g_mean_mag, phot_bp_mean_mag, phot_rp_mean_mag

(you could have written db.pmra and so on here, but as long as the names
are unique, you can skip the table name). And in a real science settings, you
should probably get the errors and astrometric_params_solved, too. . .

. 8 Customise the match radius – Finally, you may want to change the match
radius. That’s the 5./3600., and it’s in degrees. Whether 5 arcsec is too
much or too little for your application is a matter of your scientific judgement
(or a principled analysis).

. 9 Run the query – Then hit Run Query and enjoy, plot, or devour your results.
If you have large object sets, you may want to change Mode to Asynchronous
before running the query; that lets you run queries that take, potentially,
hours (but if you think you need to do this, think again and perhaps ask
the operators; there are often better and faster ways to the same result).

4 Supplement: Simbad

One nice thing about standards is that if you can operate one site, you can
(basically) operate all of them. So, since you know how to crossmatch with
PPMXL on GAVO’s TAP server, let’s see how things work with SIMBAD.

Locating Simbad’s TAP service works exactly as above: In the TAP
window, go back to the Select Service tab. In the Keywords field, enter
“simbad” and hit Find Services (that’s the button in the upper third of the
window, not the Use Service button near the bottom). You should receive
at least one result, and you want to doubleclick SIMBAD TAP.

After Use Service, you can now browse Simbad’s table metadata. Most
of the standard stuff is in basic. Use the search field to find the table, select
the table.

Just for demonstration, try again what you’ve done above, i.e., Exam-
ples, Upload Join again, fix the search radius as you see fit and send off
the query. You should fairly quickly see a couple of rows identifying the
“well-known” among the objects in the list as (possibly just being near to)

4

Adding catalog data to object lists using the VO

anything from an absorption line system or a galaxy to a semi-regular vari-
able star.

A variation of the example above (“get proper motions when all you
have is positions”) is getting positions when all you have is a list of object
names (as long as Simbad can resolve them). We just need to be a bit more
creative with our joins, and TOPCAT doesn’t have an example (yet).

Consider a file like

"HR 1014"

"M 31"

"Q2237+0305"

(the quotes just help TOPCAT to figure out that names with blanks in
them still make up a single column; if your object list doesn’t have them,
add them with sed -i 's/.*/"&"/' objs.txt).

Load that (or a similar) file into TOPCAT (manually select the CSV
format), then go back to the TAP window pointing at Simbad and run the
following query:

SELECT col1, ra, dec

FROM TAP_UPLOAD.t1

LEFT OUTER JOIN ident

ON (id=normId(col1))

LEFT OUTER JOIN basic

ON (oidref=oid)

(you will probably have to change the “t1” after TAP UPLOAD to match
the index of the table with the identifiers, which in turn is the number
TOPCAT shows in the table list in the main window).

Explaining what’s going on in this query is a bit beyond the scope of this
little tutorial – please refer to our ADQL course if you want to understand
the details.

What this returns as of this writing is:

col1 ra dec
HR 1014 49.49614153531403 -66.92685427016318
M 31 10.68470833333333 41.26875000000000
Q2237+0305

Note again that there’s no problem doing this for a thousand identifiers
at a time.

5

http://www.g-vo.org/adql

Adding catalog data to object lists using the VO

5 Supplement: Use python

Another nice thing about standards is that you get to choose your client
(i.e., the software you use to operate the services). To use the VO from
within Python programs, there is a (pip-installable, Debian-packaged) pack-
age called pyVO.

If you have it, you can run our initial example (minus the discovery part;
you could do that from within pyVO, too, but frequently it’s much better
to do that part interactively) using a program like this:

import urllib

import pyvo
from astropy.table import Table

Load our example table
our data = Table.read(

”http://docs.g−vo.org/pmadd−testdata.txt”,
format=”ascii”)

Fix its metadata
(not required with a sensible input format)
our data[”col1 ”]. name, our data[”col2”].name = ”ra”, ”dec”

construct a service ; I 've taken the URL from TOPCAT's TAP
service browser (”Selected TAP Service” near the foot
of the dialog).
service = pyvo.dal.TAPService(

”https://gea.esac.esa. int/tap−server/tap”)

run the query and retrieve the result ; note that the
”t1” after TAP UPLOAD must match the key in the uploads
dictionary.
result = service.run sync(”””

SELECT
tc .∗, pmra, pmdec,
phot g mean mag, phot bp mean mag, phot rp mean mag
FROM gaiadr2.gaia source AS db

6

Adding catalog data to object lists using the VO

JOIN TAP UPLOAD.t1 AS tc
ON 1=CONTAINS(POINT('ICRS', tc.ra, tc.dec),

CIRCLE('ICRS', db.ra, db.dec, 1./3600.))”””,
uploads = {'t1 ': our data}).to table ()

save the results ; use a useful format now.
result .write(”our−data−amended.vot”, format=”votable”)

It wouldn’t be hard to send the result to, say, TOPCAT rather than save
it. See http://docs.g-vo.org/pyvo for an informal course on this. The
source above is also attached to this PDF.

6 Supplement: Marginalia

The metadata we added above is of course extremely shoddy. For it to be
more understandable outside of TOPCAT, you would add UCDs2 to the
column metadata: For that you’d select Display/UCD from the window
and enter pos.eq.ra;meta.main in the UCD field for the RA column and
correspondingly pos.eq.dec;meta.main for the Dec column.

The query as written returns one line per match, i.e., input objects that
have no counterpart in the database will be missing in the output; and
indeed, you’ll see that for the 4000 input objects (which, really, are typically
fairly weak infrared sources if you have to know), only about 1500 output
lines result.

If you want non-matching input objects in the output, with NULLs wher-
ever database information would be, write RIGHT OUTER JOIN instead of
JOIN (“right” because your table is the right operand in the join expres-
sion). If you used the sample data set, you’ll see that 253 objects had
multiple matches in PPMXL.

Again, more on TAP and ADQL in GAVO’s little course at http::

//docs.g-vo.org/adql

2“Unified Content Descriptors”, standard labels for physical entities; you might have
seen those on VizeR

7

http://docs.g-vo.org/pyvo
http:://docs.g-vo.org/adql
http:://docs.g-vo.org/adql

import urllib

import pyvo
from astropy.table import Table

Load our example table
our_data = Table.read(
 "http://docs.g-vo.org/pmadd-testdata.txt",
 format="ascii")

Fix its metadata
(not required with a sensible input format)
our_data["col1"].name, our_data["col2"].name = "ra", "dec"

construct a service; I've taken the URL from TOPCAT's TAP
service browser ("Selected TAP Service" near the foot
of the dialog).
service = pyvo.dal.TAPService(
 "https://gea.esac.esa.int/tap-server/tap")

run the query and retrieve the result; note that the
"t1" after TAP_UPLOAD must match the key in the uploads
dictionary.
result = service.run_sync("""
 SELECT
 tc.*, pmra, pmdec,
 phot_g_mean_mag, phot_bp_mean_mag, phot_rp_mean_mag
 FROM gaiadr2.gaia_source AS db
 JOIN TAP_UPLOAD.t1 AS tc
 ON 1=CONTAINS(POINT('ICRS', tc.ra, tc.dec),
 CIRCLE('ICRS', db.ra, db.dec, 1./3600.))""",
 uploads = {'t1': our_data}).to_table()

save the results; use a useful format now.

import urllib

import pyvo
from astropy.table import Table

Load our example table
our_data = Table.read(
 "http://docs.g-vo.org/pmadd-testdata.txt",
 format="ascii")

Fix its metadata
(not required with a sensible input format)
our_data["col1"].name, our_data["col2"].name = "ra", "dec"

construct a service; I've taken the URL from TOPCAT's TAP
service browser ("Selected TAP Service" near the foot
of the dialog).
service = pyvo.dal.TAPService(
 "https://gea.esac.esa.int/tap-server/tap")

run the query and retrieve the result; note that the
"t1" after TAP_UPLOAD must match the key in the uploads
dictionary.
result = service.run_sync("""
 SELECT
 tc.*, pmra, pmdec,
 phot_g_mean_mag, phot_bp_mean_mag, phot_rp_mean_mag
 FROM gaiadr2.gaia_source AS db
 JOIN TAP_UPLOAD.t1 AS tc
 ON 1=CONTAINS(POINT('ICRS', tc.ra, tc.dec),
 CIRCLE('ICRS', db.ra, db.dec, 1./3600.))""",
 uploads = {'t1': our_data}).to_table()

save the results; use a useful format now.

import urllib

import pyvo
from astropy.table import Table

Load our example table
our_data = Table.read(
 "http://docs.g-vo.org/pmadd-testdata.txt",
 format="ascii")

Fix its metadata
(not required with a sensible input format)
our_data["col1"].name, our_data["col2"].name = "ra", "dec"

construct a service; I've taken the URL from TOPCAT's TAP
service browser ("Selected TAP Service" near the foot
of the dialog).
service = pyvo.dal.TAPService(
 "https://gea.esac.esa.int/tap-server/tap")

run the query and retrieve the result; note that the
"t1" after TAP_UPLOAD must match the key in the uploads
dictionary.
result = service.run_sync("""
 SELECT
 tc.*, pmra, pmdec,
 phot_g_mean_mag, phot_bp_mean_mag, phot_rp_mean_mag
 FROM gaiadr2.gaia_source AS db
 JOIN TAP_UPLOAD.t1 AS tc
 ON 1=CONTAINS(POINT('ICRS', tc.ra, tc.dec),
 CIRCLE('ICRS', db.ra, db.dec, 1./3600.))""",
 uploads = {'t1': our_data}).to_table()

save the results; use a useful format now.
result.write("our-data-amended.vot", format="votable")

