
Goals
The German Astrophysical Virtual Observatory (GAVO) is pursuing a project with the following goals:
• In the long-term to construct a multi-band spectral energy distribution (SED) from various catalogues, useful of source identification and classification purposes;
•In the medium term to search for exotic objects like isolated neutron stars, brown and white dwarfs;
• In the short-term to set up an infrastructure that allows exercising the existing simple cone search services (and thereby to find out what works and what not yet).
To this end GAVO is developing a multi-catalogue multi-cone (MCMC) search service feeding a probabilistic source matcher.

Astronomical Catalogues -
Simultaneous Querying and Matching

H.-M. Adorf, G. Lemson, W. Voges Max-Planck-Institut für extraterrestrische Physik,
Garching, Germany

H. Enke, M. Steinmetz Astrophysikalisches Institut Potsdam, Germany

Abstract: We report on our experience in trying to execute multiple simple cone searches on a variety of published astronomical
catalogues. The individual search results are fed into a catalogue matcher developed by GAVO. The matcher attempts to perform
a probabilistic “fuzzy join” based on sky positions and their uncertainties. We describe current features of the GAVO architecture
that support such simultaneous queries, and outline some requirements for future versions.

Multi-Catalogue Multi-
Cone Search

"Download Manager"
Probabilistic MatcherVOTable Processor

Simple Cone
Search Service #1

Service
Registry

Table on
Local Disk

Simple Cone
Search Service #2

VOTables

VOTables

VOTable

BaseURLs

BaseURLs

Simple Cone
Search Service #3

VOTable

Matcher
DataSets

Local Disk

VOTable

VOTables
Table

One or more
SCS Queries

Local Disk

InternetTable

Fig. 1: Dataflow through GAVO’s multi-catalogue multi-cone (MCMC) search and matching service: an astronomer starts a query process by specifying one or more
simple cone searches. A registry of available cone search services [2, 3] is used to build a table of available catalogues, from which the astronomer selects the
catalogues of interest. Using this selection the MCMCS “download manager” queries the services and retrieves catalogue subsets in “VOTable” XML-format [4-6].
Each data set is pre-processed to extract the information required by the probabilistic matcher application. The latter cross-matches the entries from all datasets
pertaining to the same simple query, and produces the final cross-match list.

Fig. 2: Screenshot of the multi-catalogue multi-cone search (MCMCS) download manager at work. A table (on the left) lists the available simple cone search services.
The user selects the archives to be queried, and specifies one or more simple cone searches. The download manager retrieves the corresponding VOTables and
passes them on to a result handler for further processing. A control panel (on the right) allows the user to monitor the progress of the multiple queries

Architecture
The overall architecture of the MCMC search and matching service is depicted in Fig. 1. There are three
major building blocks:
•the multi-catalogue multi-cone search “download manager”,
•the VOTable processor, and
•the probabilistic matcher.

The MCMCS download manager
The MCMCS application (Fig. 2) is similar in spirit to
the IVOA “VODownload” manager [7]. It permits to
query an on-line registry [2, 3] using a SOAP/WSDL-
based Web-service in order to retrieve the base
URLs of available simple cone searches.
Alternatively, it may use a (cached) table stored on
disk. The MCMCS download manager passes the
incoming VOTables to one or more registered “result
handlers” for further processing. The default result
handler stores the VOTables on disk in different
directories, one per simple cone search query.

The download manager is a multi-threaded Java
application, designed to minimize the latency
between query start and retrieval of the last result. It
uses an event-based notification mechanism to
inform any registered result handler about the arrival
of a new dataset.

GAVO intends to offer the MCMCS download
manager as a component within its services. In
addition, GAVO plans to make this tool generally
available for standalone use as well as a plug-in
usable by other software systems.

The VOTable processor
We are experimenting with different
approaches for pre-processing the
VOTables, in order to extract the
data needed by the matcher:
•XSLT translation into tabular
formats, e.g. comma-separated
value (CSV) files, and
•XML-parsing using a JAXB parser
compiled from the VOTable schema.

XSLT-processing is rather ro-bust;
however it requires a reader to read
in the resulting data tables. While
JAXB-based VOTable parsing is
elegant and the way of the future,
right now the approach is hampered
by the fact that many VOTables
received do not validate against the
VOTable XML-schema, thus causing
the JAXB-parser to abort the parsing
attempt with an error.

Once the VOTables have been
processed, the extracted data are
passed on to the probabilistic cross-
matcher.

The probabilistic cross-matcher
GAVO‘s matcher is designed to perform a symmetric probabilistic match of the
sources in the primary datasets from the different catalogues. Candidates are
selected from each dataset, and are successively matched in a pair-wise
fashion; intermediate datasets are matched with further primary datasets or with
other intermediate datasets. We are using a maximum-likelihood-based
approach, assuming multivariate Gaussian error distributions of the sky-
positions. For each candidate match a “current-best” joint position is computed.

In essence we are pursuing similar goals as the SkyNode/SkyQuery project [8,
9]. Our matcher differs from the SkyNode/SkyQuery approach in that we attempt
to use individual positional uncertainties on a per-object basis. This means it is
necessary to obtain the positional errors from the catalogues.

There are different statistical measures useful for assessing the quality of a
candidate match. We are exploring the use of the average squared Mahalanobis
distance (see e.g. [10]) measuring the scatter of scaled distances from the
sources to the best joint position. This is a generalization of the well-known chi-
square statistics used in the SkyNode/SkyQuery project. Inferior matches are
discriminated by applying a threshold to the average distance computed.

There are several ways positional errors can be specified. So far we have
identified four cases:

•Type 0: no error information specified in the dataset;
•Type 1: a single error column specifying an isotropic positional error;
•Type 2: two error columns specifying two uncorrelated errors, one in the
direction of the right ascension and the other in the direction of the declination;
•Type 3: a general error ellipse specified by its major and minor axis, and a
position angle;

The pre-processor must be able to identify and handle these different kinds of
error specifications. Internally the matcher is using a general 2D variance-
covariance matrix to represent the positional error.

Observations and Issues
Overall we found most advertised SCS services operational, with a failure rate at the 5% level. However, the results returned vary syntactically and semantically to a degree that currently

prevents a fully automated search and matching service. Some problems are in the data, others arise when trying to understand the schema/DTD of the VOTable itself. Here is a
preliminary list of our findings:

1. Many VOTables received do not validate.
2. The service name is not unique (e.g. 2MASS-PSC is used by Vizier and Irsatest).
3. There is no standard for determining which columns are returned with which verbosity. Also, some services return errors, other return an empty VOTable, when no object was found.
4. It is difficult to automatically detect which right ascension and declination columns to use. There are VOTables that have more than one field description with a POS_EQ_RA_MAIN

(or POS_EQ_DEC_MAIN) Unified Content Descriptor (UCD).
5. There is practically no way to automatically detect the type of the positional error information. Likewise, even if the type were known, it is not normally possible to automatically find

which columns contain the error information, since the field descriptors are unrelated.
6. The positional error information may not be available at SCS verbosity level one (although it always returns the positional information). Thus different verbosity levels have to be tried,

or one has to resort to always using verbosity = 3.
7. It is unclear whether the ID or the NAME attribute contains the “official” name of a data column. Some VOTables use both attributes.
8. The angular units are not homogeneously specified; mostly “deg” is used for the position, but we also found “degrees”. The units of the positional errors are usually not “deg”, but

“arcsec”, so a unit conversion needs to be performed somewhere in the dataflow.
9. We assume that the error in the right ascension always specifies the error on a circle in the direction of the right ascension (implicit multiplication with cos(declination)). It is unclear

whether this assumption can be relied upon, or whether sometimes people might specify the error of the right ascension coordinate itself. The difference would be most notable near
the poles.

Some of the issues mentioned above, e.g. the NAME or ID problem [12] have been noted before. Others are addressed in the proposed extension to the VOTable 1.0 standard [11]. E.g.
column grouping is proposed in [13].

References
1. Anonymous, NVO compliance - Simple Cone Search. 2002, National Virtual Observatory (NVO). p. 3. http://us-vo.org/metadata/conesearch/.
2. Anonymous, VO Conesearch Profile Services. 2002, NVO. http://voservices.org/cone/.
3. Anonymous, Virtual Observatory Registry Prototype. 2003, NVO/Johns Hopkins University. http://skyservice.pha.jhu.edu/devel/registry.
4. Ochsenbein, F., et al., VOTable: Tabular Data for Virtual Observatory. 2002. http://www.eso.org/gen-fac/meetings/vo2002/up/talks/ochsenbein/Ochsenbein.ppt.
5. Ochsenbein, F., VOTable Documentation. 2002, The VizieR Catalogue Service, Centre de Données astronomiques de Strasbourg (CDS). http://vizier.u-strasbg.fr/doc/VOTable/.
6. Williams, R., et al., VOTable: A Proposed XML Format for Astronomical Tables. 2002, CDS: Strasbourg. p. 28. http://cdsweb.u-strasbg.fr/doc/VOTable/VOTable-1-0.pdf.
7. Anonymous, About the IVOA Client. 2003, National Virtual Observatory (NVO). http://skyservice.pha.jhu.edu/develop/vo/ivoa/default.aspx.
8. Thakar, A.R., et al. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory. in AAS 201st Meeting, January, 2003, Session 105.
Mapping the Cosmos: A Variety of Surveys, Oral, Wednesday, January 8, 2003, 2:00-3:30pm, 606-607. 2003. http://www.aas.org/publications/baas/v34n4/aas201/1137.htm.
9. Malik, T., et al., SkyQuery - A distributed Web-based Query Service for Astronomy. 2002, The Johns Hopkins University: Baltimore. http://www.skyquery.net/images/skyquery.doc.
10. Hsu, S.-Y., The Mahalanobis Classifier with the Generalized Inverse Comp. Graph. Image Process., 1979. 9: p. 117--134.
11. Ochsenbein, F., Proposed Extensions to VOTable 1.0. 2003, Observatoire Astronomique de Strasbourg, France. http://www.ivoa.net/internal/IVOA/IvoaVOTable/votable-1x.html.
12. Page, C., NAME or ID. 2003. http://www.ivoa.net/forum/votable/0250.htm.
13. Ochsenbein, F., Column Groups in VOTable. 2003. http://www.ivoa.net/forum/votable/0190.htm.

Suggestions
Here is a list of suggestions for improving the content and format of

VOTables, so that a fully automated search and match process will be
possible in the future:

1. Use unique service names and include them in the VOTable.
2. Replicate the SCS query in the VOTable.
3. Standardize a mechanism that allows retrieving just the field

descriptions, e.g. by issuing a SCS with a negative search radius.
4. Always return the positional error information along with the positions.
5. Specify and implement a unique mechanism that allows an automatic

identification of the position and error fields.
6. Support groupings of VOTable fields.
7. Indicate the type of the positional error specification (0 to 3 error

columns).
8. Standardize on how angular units are specified. Perhaps, always use

decimal degrees, also for the positional errors.
9. Include positional errors in the SCS service, if they are present in the

original catalogue, but so far absent in the VOTables returned.
10. As a stop-gap measure, include extensive comments in the field

descriptions (following Vizier’s practice is to be commended) so that at
least humans can find out what the fields are.

Conclusion
It is certainly an impressive accomplishment of the VO community that, with rather modest
effort, it is possible to invoke a simultaneous search on 60+ services on the Internet. It is
likewise impressive that the resulting datasets are available in “almost” the same data format.

In order to fully automate the search and matcher service, the VO community probably needs
to spend some further work on harmonizing the deficiencies in implementing the VOTable
standards, on straightening out the different interpretation of the existing standards, and on
augmenting the existing standards in light of the needs of probabilistic source matching.

Acknowledgement: The core of the MCMCS download manager was implemented by Julius E.
Adorf, and a pre-release was kindly made available to GAVO for use within this project.

