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Summary. Spectral analysis needs the observation of lines of successive ionization
stages in order to evaluate the ionization equilibrium (of a particular species) which
is a sensitive indicator for the effective temperature (Teff). Since stars with Teff as
high as 100 000 K have their flux maximum in the extreme ultraviolet (EUV) wave-
length range and due to the high degree of ionization, most of the metal lines are
found in the ultraviolet (UV) range. Thus, high-S/N and high-resolution UV spec-
tra are a pre-requisite for a precise analysis. Consequently, we employed the Faint
Object Spectrograph (FOS), the Goddard High Resolution Spectrograph (GHRS),
and the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space
Telescope (HST) in order to obtain suitable data. We present state-of-the-art anal-
yses of the hottest (pre-) white dwarfs by means of NLTE model atmospheres which
include the metal-line blanketing of all elements from hydrogen to nickel.

1 INTRODUCTION

In the early eighties of the last century, the evolution of “H-normal” post-
AGB stars has been quite well understood, e.g. Schönberner (1983) and
Blöcker & Schönberner (1990) have presented evolutionary calculations for
these stars. At that time, neither standard evolutionary calculations nor
model atmospheres could explain observations of H-deficient post-AGB stars.

In 1979 the discovery of PG1159−035, the H-deficient prototype of the
GW Vir variables, had shown the inadequacy of theory: the optical spectrum
exhibits broad and shallow absorption lines of highly ionized species, e.g.
He II and C IV, indicating Teff to be much higher than 100 000K. At this
temperature regime, the assumption of local thermodynamical equilibrium
(LTE) is not valid and thus, adequate fully metal line-blanketed NLTE model-
atmospheres were required – but not available.

In Sect. 2 we describe briefly our NLTE model-atmosphere code TMAP,
which has been developed over the last two decades and has been successfully
used for the analysis of hot, compact stars. Such analyses have continuously
provided constraints for evolutionary theory and, vice versa, predictions from
evolutionary calculations have inspired us to search for lines of unidentified
species in UV spectra (e.g. Werner et al., 2004, 2005, 2007a,b, for Ne VII, F VI,
Ar VII, and Ne VIII, respectively) provided by the HST and the Far Ultraviolet
Spectroscopic Explorer (FUSE). The synergy effect of both satellites gave us
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the opportunity to precisely analyze strategic lines from the complete UV
range (from the H I Lyman edge to the optical) and to determine photospheric
properties with hitherto unprecedented accuracy. In Sect. 3 and 4, we give
representative examples for our analyses of H-deficient and H-normal post-
AGB stars.

2 NLTE MODEL ATMOSPHERES

We use TMAP1, the Tübingen NLTE Model Atmosphere Package (Werner,
1986; Werner et al, 2003; Rauch & Deetjen, 2003), for the calculation of
plane-parallel, chemically homogeneous models in hydrostatic and radiative
equilibrium. TMAP considers all elements from H to Ni (Rauch, 1997, 2003).
In the analysis of LS V+46o21 (Sect. 4), e.g., 686 levels are treated in NLTE,
combined with 2417 individual lines and about 9 million iron-group lines.

3 SPECTROSCOPY OF PG 1159 STARS

PG 1159 stars are so-called “born-again post-AGB stars” (Iben et al., 1983),
i.e. after their departure from the asymptotic giant branch (AGB) and at
already declining luminosity, they experienced a (very) late thermal pulse
(He-shell flash) and returned to the AGB. During the born-again phase, the
entire H-rich envelope (10−4 M�) was convectively mixed (Herwig et al., 1999;
Althaus et al., 2005) with the intershell material (10−2 M�, located between
He- and H-burning shells) and H is completely burned. The direct view on
intershell matter (at the surface now) allows to conclude on details of nuclear
and mixing processes in AGB stars. This is an important test for stellar
evolutionary models (cf. Werner & Herwig, 2006).

Our analyses of PG1159 stars revealed that their abundances of He, C,
N, O, Ne, Mg, F, Si, and Ar are in line with predictions from evolutionary
models. These models show also a Fe depletion due to n-captures within the
s-process. In three observations of PG 1159 stars with FUSE, no iron lines are
detectable which gives a surprisingly large Fe-deficiency of 1 – 2 dex (Miksa
et al., 2002). An inspection of STIS observations of the same objects (e.g.
Jahn et al., 2007) shows that there is no increase of the Ni abundance and
thus, it appears likely that the s-process has converted even Ni into trans
iron-group elements. However, we do not have reliable atomic data to prove
this. Other elements show deviations from theory, e.g. P appears roughly
solar but the models predict a strong enhancement while S is expected to
stay solar but shows large depletion (up to 2 dex). For a detailed review, see
Werner & Herwig (2006).

1 http://astro.uni-tuebingen.de/∼rauch/TMAP/TMAP.html
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Fig. 1. Section of the STIS observation of LSV+46o21 compared to our final
model. Identified lines are marked at the top.

4 SPECTROSCOPY OF LS V+46o21

LS V+46o21 is the central star of the closest known (d = 130 pc, � =
1.6o) planetary nebula Sh 2−216. We have observed LSV +46o21 with STIS
(5.5 ksec in 2000). The STIS observation shows more than 1000 absorption
features (about 10% interstellar). 95% of these are identified. We have calcu-
lated the most detailed TMAP model-atmosphere ever (Rauch et al., 2007)
in order to reproduce the observed spectrum (an example is shown in Fig.1).
In the STIS observation, we identified Si V lines (cf. Jahn et al., 2007), Mg IV

lines (for the 1st time in a post-AGB star), and Ar VI lines (for the 1st

time in any star). Most of the determined abundances are in agreement with
diffusion-model predictions (Chayer et al., 1995).

5 TMAP IN THE VIRTUAL OBSERVATORY

The HST with its UV spectroscopic capabilities has been crucial for these
analyses and the development of TMAP. Hopefully, the Cosmic Origins Spec-
trograph (COS) will continue the work of its very successful precursors. The
comparison of our synthetic spectra with the observations of hot, compact
stars convinced us that theory works well and we have arrived at a high level
of sophistication.

The spectral analysis, although to be done with sufficient care, has not
to remain the field of specialists. Within the framework of German Astro-

physical Virtual Observatory (GAVO, please note that the URLs given below
will change to the GAVO portal2 later) project, we provide grids of model-
atmosphere fluxes (TMAF 3) as well as a WWW interface (TMAW 4) to calcu-

2 http://www.g-vo.org/portal/
3 http://astro.uni-tuebingen.de/∼rauch/TMAF/TMAF.html
4 http://astro.uni-tuebingen.de/∼TMAW/TMAW.shtml
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late individual TMAP model atmospheres without detailed knowledge about
theory etc.

Since the reliability of synthetic spectra is strongly dependent on the
accuracy of the atomic data which is used for their calculation, standard
TMAW calculations use predefined model atoms which are provided within
the Tübingen Model-Atom Database TMAD5.

While the use of the TMAF flux grids is the easiest way for a user of the
Virtual Observatory, even individual analyses can easily be performed with
appropriately adjusted model atoms.
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