Tycho-Gaia and beyond or: What Daniel researched in his Ph.D. thesis or: Why the first Gaia data release is special

D. Michalik (Lund University)

2010–2015: Ph.D. at Lund University, Sweden 2009–2010: Young Graduate Trainee, European Space Agency

Step 1 Introduction

The first Gaia data release

Release schedule revised based on Ph.D. thesis research

Current prediction

- Summer 2016:
 - Improved positions, realistic uncertainties and G-magnitudes for 100s of millions of stars
 - Ecliptic pole data (photometry calibration)
 - 5 parameter astrometry for approx. 2 million Tycho and Hipparcos stars (Tycho-Gaia Astrometric Solution; TGAS)

Full five parameter Gaia-only astrometry from summer 2017

Gaia scanning the sky

Gaia scanning the sky

Sky coverage over time (Nsl₃₇ + Nsl_{GAREQ})

Animation: D. Michalik & B. Holl

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

Preprocessed observations \Rightarrow Individual source parameters

- Have: 10¹² observations
- Want: ca 5x10⁹ unknowns:
 Astrometric source parameters, attitude, calibration
- How: Globally, self-consistent manner
- Strategy: Iterative Solution
- Tool: Astrometric Global Iterative Solution (AGIS)

\Rightarrow A linear least-squares problem Nx = b with iterative solution

Read more: Lindegren et al. (2012, A&A)

AGISLab

- · For development and testing of the AGIS algorithms
- · For experiments with scientific exploitation

Figure: D. Michalik

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

First release is special

Number of transits in a nominal 5 year interval: smooth coverage, 80 transits on average

Simulations: D. Michalik

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

First release is special

Number of transits during the 13 months for Gaia-DR1: some areas are poorly observed

Simulations: D. Michalik

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

Step 2 Ambiguity in early datasets

Change in observed coordinate over 5 years

Figure: D. Michalik & L. Lindegren

Gaia observations over 5 years \Rightarrow pos, ϖ , μ

Gaia observations over 1 year \Rightarrow marginal

$\mu - \varpi$ degeneracy for < 1 year observations

$\mu - \varpi$ degeneracy for < 1 year observations

Step 3 Prior information to the rescue

Integrating prior data in Gaia astrometry

Using Bayes' rule $f(\mathbf{x}|\mathbf{h}) \propto L(\mathbf{x}|\mathbf{h}) \times p(\mathbf{x})$

- Prior probability density function $p(\mathbf{x})$ from prior data
- Likelihood L(x|h) from Gaia
- Assuming Gaussian errors: posterior $f(\mathbf{x}|\mathbf{h})$ is given by joint solution of combined normal equations

Figure: D. Michalik

Step 4 Tycho-Gaia Astrometric Solution

The Tycho-2 catalogue

2.5 million positions at J1991.25, σ = 5–70 mas, 90% complete to V=11.5, obtained from Hipparcos starmapper¹

Figure: Tycho-2 sky coverage 1 auxiliary photomultiplier and grid for attitude determination (Michalik et al. 2015a, Fig. 2, left)

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

Position alone sufficient to lift the degeneracy

⇒ Independent long-baseline proper motions, parallaxes

Simulated Gaia observations (July 2014–May 2015)

Iter 100 VarPi errors (2420458 stars)

Unbiased parallax errors (average per pixel), small spread ⇒ **Success!** (...in a perfect world)

Figure: D. Michalik

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

HR-diagram from TGAS trial (real data)

Results are based on a trial run using just a few months of Gaia data

(approx. 480 000 Tycho-2 stars, with 2MASS colours, ϖ > 0, σ < 1 mas, ϖ/σ > 10)

Plot: L. Lindegren

Tycho-Gaia Astrometric Solution (TGAS)

- Prior: add positions at J1991.25 as additional observations
- Full solution with much less Gaia data (approx. one year earlier)
- Hipparcos stars are an integral part of TGAS
- Independent proper motions and parallaxes for 2.5 M stars

Left: Tycho-2 CD cover Right: Illustration Gaia satellite (ESA) Read more: Michalik et al. 2014, 2015a

Step 5 A prior to rule them all

Short/scarce datasets need a prior

- · Gaia observes 1 billion of the few 100 billion Milky Way stars
- Tycho prior for 2.5 M what about the remaining 997.5 M?
- · Actual parallax and proper motion cause (unknown!) bias

- Same partial solution for very different astrometric parameters
- Is the observation a nearby dwarf (blue) or a distant giant (orange)?
- Formal errors grossly underestimate the actual errors!
 Figure: L. Lindegren & D. Michalik

A generic approach for incomplete data

Objective: Obtain positions and correct error estimates, even for:

- First release (too short a time interval)
- Stars at the detection limit (seen too seldom)
- Transient objects (too short a time interval)

What is ...

- the influence of a prior to an astrometric solution?
- the probability density function of the positional offset?
- a realistic distribution of true ϖ and μ ?
- the optimal prior to pick, and what does it depend on?

Study based on Gaia Universe Model Snapshot (GUMS)

Behaviour of astrometric solution with prior

Left: Quasi two parameter solution

· Formal errors grossly underestimate actual errors

Middle: Use knowledge that parallaxes, proper motions are small

• 5 parameter solution, realistic formal errors

Right: Degenerate solution

Figures: Michalik et al. 2015b, Fig. 1+2

Generic prior properties

90% of the actual position errors contained in the 90% confidence formal uncertainty ellipse

Excerpt from Michalik et al. 2015b, Fig. 3

Generic prior properties

Prior uncertainty depends on magnitude and Galactic latitude

Generic prior results

Table: Actual errors and agreement factor with formal uncertainty.

Prior $\sigma_{\varpi,p}$	Fraction in 90% conf. ellipse			Actual position errors [mas]		
	$G \simeq 11$	$G \simeq 15$	$G \simeq 19$	$G \simeq 11$	$G \simeq 15$	$G \simeq 19$
none (2 parameters) Generic prior	0.5% 90.1%	1.8% 91.4%	13.5% 91.2%	33.0 7.6	16.3 4.3	15.2 7.6

Benefits: always provides a non-singular solution

- Reasonable error estimates and better actual errors
- With insufficient amount of observations

Caveats: biases the solution

- **1** Serious for ϖ , $\mu \Rightarrow$ Not to be published
- Must not be used as soon as enough information are available

Table: Excerpt from Michalik et al. 2015b, Table 2

Step 6 Verification of TGAS parallaxes

Real life \neq simulations

Some of the real life complications:

- · Data gaps due to orbit maintenance, cosmic rays
- Transmission loss \Rightarrow Heating for decontamination
- Re-focussing
- Micro-meteoroid hits
- Thermal micro-clanks (material relaxation)

And the eternal nightmare of an astrometrist ...

Figure: a real Gaia micro-meteoroid hit

Basic Angle Variations

- Basic angle (BA), $\Gamma = 106.5 \text{ deg}$
- Stability critical for absolute parallaxes
- Gaia has on-board metrology, the Basic Angle Monitor (вам)
- BAM data shows large variations (approx. 1 mas)

Figure: L. Lindegren Publicly available from A. Mora et al. (2014, SPIE)

Results with BA variations

- Simulating variations found by вам
- Without corrections ⇒ large systematics in parallaxes

Iter 100 VarPi errors (2420458 stars)

Parallax errors (average per pixel, overall median ~ 0.8 mas)

Figure: D. Michalik. BAV implementation by L. Lindegren & A. Bombrun

Tycho-Gaia and beyond // D. Michalik (Lund University) // 4 Apr 2016

Verification of TGAS parallaxes through quasars

Are BAM measurements real? (Michalik & Lindegren 2016)

But: Independent quasar solution in TGAS not possible

1 Add prior for quasars: Assuming zero proper motion

Compare resulting parallaxes to zero (BAM expectation: 871.9 μas)
 Demonstrated in simulations

Subset	Median [µas]			
with spurious proper motions				
Stars	872.0 ± 0.2			
Quasars	$8_{77.7} \pm 3.4$			
with 5% contamination				
Stars	872.0 ± 0.2			
Quasars	$\textbf{872.0} \pm \textbf{2.4}$			

Step 7 Conclusions

Summary of thesis research

Study of how to handle stars with insufficient observations

· Scenarios: first release, transient sources, sources at detection limit

Generic prior for non-Hipparcos and non-Tycho stars

· Ensures sensible position estimates and uncertainties

Tycho-Gaia: long-baseline astrometry, full five parameter

- · Preliminary results (real data!) very exciting and promising
 - 2.2 million parallaxes and proper motions, Hipparcos-like quality
 - 1 million of very high quality ($\sigma_{c\sigma}$ < 0.32 mas)
 - · Independent parallaxes and proper motions, incl. Hipparcos stars
- Long-period exoplanets from $\Delta \mu = \mu_{\text{TGAS}} \mu_{\text{Hipparcos}}$
- Challenges: scientific validation, basic angle variations
- · Quality of parallaxes can be verified through quasars